Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Transfus Clin Biol ; 28(3): 264-270, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1201297

ABSTRACT

OBJECTIVES: The patients with hematological malignancies are a vulnerable group to COVID-19, due to the immunodeficiency resulting from the underlying disease and oncological treatment that significantly impair cellular and humoral immunity. Here we report on a beneficial impact of a passive immunotherapy with convalescent plasma to treat a prolonged, active COVID-19 infection in a patient with a history of nasopharyngeal diffuse large B-cell lymphoma treated with the therapy inducing substantial impairment of particularly humoral arm of immune system. The specific aim was to quantify SARS-CoV2 neutralizing antibodies in a patient plasma during the course of therapy. MATERIALS AND METHODS: Besides the standard of care treatment and monitoring, neutralizing antibody titers in patient's serum samples, calibrated according to the First WHO International Standard for anti-SARS-CoV-2 immunoglobulin (human), were quantified in a time-dependent manner. During the immunotherapy period peripheral blood flow cytometry immunophenotyping was conducted to characterize lymphocyte subpopulations. RESULTS: The waves of clinical improvements and worsening coincided with transfused neutralizing antibodies rises and drops in the patient's systemic circulation, proving their contribution in controlling the disease progress. Besides the patient's lack of own humoral immune system, immunophenotyping analysis revealed also the reduced level of helper T-lymphocytes and immune exhaustion of monocytes. CONCLUSION: Therapeutic approach based on convalescent plasma transfusion transformed a prolonged, active COVID-19 infection into a manageable chronic disease.


Subject(s)
Antibodies, Viral/biosynthesis , COVID-19/therapy , Immunocompromised Host , Lymphoma, Large B-Cell, Diffuse/complications , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/blood , Antibodies, Viral/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , COVID-19/complications , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Chlorocebus aethiops , Combined Modality Therapy , Hematopoietic Stem Cell Transplantation , Humans , Immunization, Passive , Immunophenotyping , Lymphocyte Subsets/drug effects , Lymphocyte Subsets/immunology , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/therapy , Lymphopenia/etiology , Lymphopenia/immunology , Male , Middle Aged , Monocytes/immunology , Nasopharynx/virology , RNA, Viral/analysis , RNA, Viral/blood , Radiotherapy, Adjuvant , Rituximab/administration & dosage , Rituximab/adverse effects , SARS-CoV-2/isolation & purification , Vero Cells , Virus Cultivation , COVID-19 Serotherapy
2.
Int Immunopharmacol ; 97: 107702, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1198831

ABSTRACT

BACKGROUND: The clinical characteristics and treatment of patients who tested positive for COVID-19 after recovery remained elusive. Effective antiviral therapy is important for tackling these patients. We assessed the efficacy and safety of favipiravir for treating these patients. METHODS: This is a multicenter, open-label, randomized controlled trial in SARS-CoV-2 RNA re-positive patients. Patients were randomly assigned in a 2:1 ratio to receive either favipiravir, in addition to standard care, or standard care alone. The primary outcome was time to achieve a consecutive twice (at intervals of more than 24 h) negative RT-PCR result for SARS-CoV-2 RNA in nasopharyngeal swab and sputum sample. RESULTS: Between March 27 and May 9, 2020, 55 patients underwent randomization; 36 were assigned to the favipiravir group and 19 were assigned to the control group. Favipiravir group had a significantly shorter time from start of study treatment to negative nasopharyngeal swab and sputum than control group (median 17 vs. 26 days); hazard ratio 2.1 (95% CI [1.1-4.0], p = 0.038). The proportion of virus shedding in favipiravir group was higher than control group (80.6% [29/36] vs. 52.6% [10/19], p = 0.030, respectively). C-reactive protein decreased significantly after treatment in the favipiravir group (p = 0.016). The adverse events were generally mild and self-limiting. CONCLUSION: Favipiravir was safe and superior to control in shortening the duration of viral shedding in SARS-CoV-2 RNA recurrent positive after discharge. However, a larger scale and randomized, double-blind, placebo-controlled trial is required to confirm our conclusion.


Subject(s)
Amides/administration & dosage , Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Pyrazines/administration & dosage , Reinfection/drug therapy , Administration, Oral , Adult , Aged , Amides/adverse effects , Antiviral Agents/adverse effects , COVID-19/blood , Female , Humans , Lymphocyte Subsets/drug effects , Male , Middle Aged , Patient Discharge , Pyrazines/adverse effects , RNA, Viral/analysis , RNA, Viral/drug effects , Reinfection/blood , SARS-CoV-2/drug effects , Treatment Outcome
3.
J Med Virol ; 93(4): 2210-2220, 2021 04.
Article in English | MEDLINE | ID: covidwho-893240

ABSTRACT

The evaluation of new therapeutic resources against coronavirus disease 2019 (COVID-19) represents a priority in clinical research considering the minimal options currently available. To evaluate the adjuvant use of systemic oxygen-ozone administration in the early control of disease progression in patients with COVID-19 pneumonia. PROBIOZOVID is an ongoing, interventional, randomized, prospective, and double-arm trial enrolling patient with COVID-19 pneumonia. From a total of 85 patients screened, 28 were recruited. Patients were randomly divided into ozone-autohemotherapy group (14) and control group (14). The procedure consisted in a daily double-treatment with systemic Oxygen-ozone administration for 7 days. All patients were treated with ad interim best available therapy. The primary outcome was delta in the number of patients requiring orotracheal-intubation despite treatment. Secondary outcome was the difference of mortality between the two groups. Moreover, hematological parameters were compared before and after treatment. No differences in the characteristics between groups were observed at baseline. As a preliminary report we have observed that one patient for each group needed intubation and was transferred to ITU. No deaths were observed at 7-14 days of follow up. Thirty-day mortality was 8.3% for ozone group and 10% for controls. Ozone therapy did not significantly influence inflammation markers, hematology profile, and lymphocyte subpopulations of patients treated. Ozone therapy had an impact on the need for the ventilatory support, although did not reach statistical significance. Finally, no adverse events related to the use of ozone-autohemotherapy were reported. Preliminary results, although not showing statistically significant benefits of ozone on COVID-19, did not report any toxicity.


Subject(s)
COVID-19 Drug Treatment , Oxygen/administration & dosage , Ozone/administration & dosage , COVID-19/blood , COVID-19/virology , Female , Humans , Lymphocyte Subsets/drug effects , Male , Middle Aged , Oxygen/adverse effects , Ozone/adverse effects , Probiotics/administration & dosage , SARS-CoV-2/isolation & purification
4.
Med Hypotheses ; 144: 109988, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-591493

ABSTRACT

Pentoxifylline (PTX) is a phosphodiesterase inhibitor that increases cyclic adenosine monophosphate levels, which in turn activate protein kinase, leading to a reduction in the synthesis of proinflammatory cytokines to ultimately influence the renin-angiotensin system (RAS) in vitro by inhibiting angiotensin 1 receptor (AT1R) expression. The rheological, anti-inflammatory, and renin-angiotensin axis properties of PTX highlight this drug as a therapeutic treatment alternative for patients with COVID-19 by helping reduce the production of the inflammatory cytokines without deleterious effects on the immune system to delay viral clearance. Moreover, PTX can restore the balance of the immune response, reduce damage to the endothelium and alveolar epithelial cells, improve circulation, and prevent microvascular thrombosis. There is further evidence that PTX can improve ventilatory parameters. Therefore, we propose repositioning PTX in the treatment of COVID-19. The main advantage of repositioning PTX is that it is an affordable drug that is already available worldwide with an established safety profile, further offering the possibility of immediately analysing the result of its use and associated success rates. Another advantage is that PTX selectively reduces the concentration of TNF-α mRNA in cells, which, in the case of an acute infectious state such as COVID-19, would seem to offer a more strategic approach.


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning , Immunologic Factors/therapeutic use , Pandemics , Pentoxifylline/therapeutic use , Renin-Angiotensin System/drug effects , SARS-CoV-2/physiology , Alveolar Epithelial Cells/drug effects , Angiotensin II/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/epidemiology , COVID-19/immunology , COVID-19/physiopathology , Complement Activation/drug effects , Cytokines/biosynthesis , Cytokines/genetics , Disease Models, Animal , Endothelial Cells/drug effects , Gene Expression Regulation/drug effects , Humans , Immunologic Factors/pharmacology , Inflammation , Lymphocyte Subsets/drug effects , Microcirculation/drug effects , Oxidative Stress , Pentoxifylline/pharmacology , Rats , Receptors, Virus/metabolism , Renin-Angiotensin System/physiology , Signal Transduction/drug effects , Venous Thromboembolism/etiology , Venous Thromboembolism/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL